
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4316 http://www.webology.org

Multilevel Ensemble Model For Prediction Of Android

Malware

Ravneet Singh Bedi
1 and Prashant Singh Rana

2

1Computer Science and Engineering

Department, Mewar University, Gangarar,

Chittorgarh, Rajasthan, India.

2Computer Science and Engineering Department,

Thapar Institute of Engineering and Technology, Patiala, Punjab, India.

Abstract. Early identification of malicious applications can help the Android user

register private data and device integrity. It is imperative to introduce a reliable system

with high precision and effectiveness for predicting. In this study, features extracted from

intermediate code representations obtained using de compilation of APK file are used for

providing requi- site input data to develop the models for predicting android malware

applications. A new multi-tier set model is developed for the prediction of Android

Malware. Under this overar- ching approach, seven different machine learning models

are combined to predict Android malware. The proposed model reaches 97.56

Keywords: Machine learning models; Multilevel ensemble model; Regularized trees;

An- droid Malware;

1 Introduction

According to India’s digital project and Android operating system, the mobile phone has

grown in popularity and is becoming essential to the modern user. From January 2015 to

December 2021, 155 million new Internet users have been identified in India and 40 per

cent of Indians use mobile Internet and smartphones. The digital economy will also grow as

more and more private and public actors have opportunities to provide digital services.

Android is now the most popular smartphone platform with 80% of global sales at the end

of Q4 2021. By the end of December 2021, 6.5 million Android apps on Google Play and

smartphone users are using over 60 percent of these Android apps. With the popularity of

these apps, it also calls on cybercriminals to develop malicious apps to access important

information from smartphones. According to the survey of G DATA security experts, 3

million new malicious apps in the fourth half of 2021 and 80% smartphone worldwide had

installed on them Android. These experts also observed that the new strain of malware

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4317 http://www.webology.org

every 5 seconds and cyber criminals find new ways and increasing strength to attack

Android users [1]. It is challenging to predict malware apps during installation in

smartphones. Also, it is non- trivial in some cases to replicate the problem that arises due

to this malware apk [2]. Early identi- fication of such malware apps can help the android

user to save private data and device integrity. Based on the recent study, researchers

observed that the behaviors of Android apps could be ana- lyzed using static source code

metrics extracted from intermediate code representations obtained using de compilation of

APK file [2] [3]. However, there are three main technical challenges in

developing an android malware prediction model using machine learning techniques.

– Aggregation Measures: To develop an android malware prediction model, the apk

file is decompiled to get the intermediate code and source code metrics that may have

a relationship with malware, are computed. In this work, features sets extracted from

source code are used to measure the internal structure of the android applications.

These features are computed at the file level, and considerably easier for a developer

to develop any prediction model at the file level. But the objective of this work is to

predict malware and normal android applications. To achieve this, we need to apply

aggregation measures on the file-level metrics to compute metrics at the system level.

So, the aggregation measures are used to find the metrics at the system level, which

will help develop android malware, prediction models.

– High-Dimensional Data: The performance of the classifiers also depends on features

that are considered as the input of the android malware prediction models. Selection of the

relevant and suitable set of the significant uncorrelated feature is a technical challenge

in the context of malware prediction.

– Imbalanced Data: The other technical challenge in building an android malware

prediction model is that the data used for training the models are not balanced. A data

is considered as balanced when the instances of the target class are approximately

evenly distributed across various categories of the target class [4] [5]. An imbalance

dataset is a dataset in which the instances of the target class are unevenly distributed

across the target class categories. In this work, the considered dataset has not had an

equal number of malware and normal apks.

The study investigates source code-based approaches for analyzing historical information

databases to uncover interesting patterns and knowledge that can support android users in

identifying mal- ware applications. This study uses different machine learning algorithms to

find interesting patterns by considering features extracted from source code metrics as input.

The paper is organized as follows: A hasty overview of the evaluated features, dataset,

feature selection, machine learning models, and benchmark dataset are presented. The

methodology and proposed model are explained with detailed implementation. The

experiments, result analysis, comparison, and discussion are discussed with the

conclusion and future work.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4318 http://www.webology.org

2 Literature Review and Background

The focus areas of this proposal are on the application of various sets of metrics such as source

code metrics, word metrics, and network metrics to develop a model for predicting malware

applications. Due to space limitations, I reviewed some closely related work to this

research proposal.

Anshul Arora and Sateesh K Peddoju derived a malware detection model called NTP

Droid using System Permissions and Network Traffic [6]. They have collected the

features from System Permissions and Network Traffic of Android applications and used

them as input to develop one hybrid model for predicting malware applications. They have

considered the P-Growth algorithm to train this model and identify valuable patterns for

predicting malware applications. They have also derived one model called Poster using the

same features but trained using Unsupervised Learning and Supervised learning [1].

Arvind Mahindru and Paramvir Singh studied the dynamic permission of Android

applications and proposed one model for detecting malware applications using Machine

Learning Techniques [7]. They have experimented on 11000 Android applications and

extracted 123 features based on the dynamic behavior of these applications. Arvind

Mahindru and Paramvir Singh have considered these 123 features as input to train the

android detection models using Decision Tree (J48), Naive Bayes (NB), Simple Logistic

(SL), Random Forest (RF), and k-star for detecting malware appli- cations.

Shina Sheen et al. presented an approach for detecting malware applications using multi-

feature collaborative decision fusion (MCDEF) [8]. They have analyzed different features

based on API call and permission and considered these analyzed features as an input to train

the malware prediction models using ensemble learning methods. They have validated these

models on different categories of malware applications.

 Table 1: Sample dataset of Android APPs

F1 F2 F3 F4 ——–

F120

F1

21

F122 F12

3

Clas

s

20.00 3.7

3

0.2

2

47.87 ——– -

0.60

-

0.03

1176.

35

9.4

4

1

118.0

0

-

0.82

0.3

5

8.00 ——–

0.44

-

0.59

533.6

4

3.8

5

1

29.50 2.6

1

0.4

0

53.96 ——– -

0.33

-

0.08

2267.5

8

8.5

2

1

66.00 1.3

0

0.3

3

28.29 ——–

0.07

-

0.47

4212.

79

8.2

4

0

137.5

0

0.3

2

0.3

1

11.07 ——–

0.19

-

0.39

1275.

56

11.6

5

0

65.33 1.6

1

0.2

9

32.57 ——– -

0.15

-

0.34

1630.9

0

8.2

3

0

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4319 http://www.webology.org

3 Materials and Methods

3.1 Dataset and its features

To conduct an in-depth analysis of permission usage of Android applications, we collected 1600

of

.apk files, from Google’s play store [6], app china [9], hiapk [10], Android [3], mumayi [11],

gfan [12], pandaapp [4] and slideme [13]. These .apk files are collected after removing

viruses, reported by Microsoft Windows Defender 10 and Virus Total 11. Virus Total 12

helps detect malware by antivirus engines and includes over 60 antivirus software. A number

of 600 malware samples, from two different datasets [12] [14] are collected. In [12] Kadir et

al. introduced an Android sample set of botnets, consisting of 14 different botnet families.

Android Malware Genome project [14] contains a collection of different malware samples

that cover the majority of existing Android malware families. Both malware and benign

applications have been collected from the abovementioned sources until December 2018.

The dataset consists of 1600 rows and 123 features. Features consist of dynamic permission

and behavior of Android applications. It consists of 800 normal apps and 800 abnormal

(malware) apps. The glimpse of datasets is presented in Table 1. F1 to F123 are the features,

and Class represent the type of the APP, i.e., normal (1) or malware(0).

3.2 Feature Measurement

This study obtained features extracted from intermediate code representations using the

decom- pilation of APK files. CKJM tool [9] is used to calculate 18 different types of

features. CKJM comprehensive tool is used for computing the object-oriented metrics at

the class level. The byte code of the compiled Java files is processed to compute the

object-oriented source code metrics. The definition of these considered metrics is given

in [10].

3.3 Machine Learning Methods

To get better results, the models’ parameters need to be tuned. The models used in the

present study are described in Table 2 with required packages and their tuning

parameters.

4 Methodology

The methodology is represented in Fig 1. In the first stage, android application packages

(.apk) are collected from different sources. In this work, we are using 1600 publicly available

unique Android application packages (.apk) comprising of normal Android application

packages and malicious

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4320 http://www.webology.org

Table 2: Machine Learning Models

Model Metho

d

Required

Package

Tuning Parameter

Random Forest (RF) [15] rf random forest mtry=2, ntree=500

Support vector machine (SVM)

[16]

ksvm kernlab kernel="rbfdot", type="C-

svc"

Decision Tree [17] rpart None Use surrogate=0, max

surrogate=0

Neural Network [18] nnet nnet size=10

Extreme Learning Machine

(ELM) [19]

elmtrai

n

elmNN nhid=10

Avnnet [20] avNNet caret size, linout, trace

Regularized Random Forest

(RRF) [21]

RRF RRF None

applications from different sources such as mumayi [22], gfan [7], Android Malware Genome

Project [2], Droid Kin data set16 for this experiments.

The feature measurement is done in the second step and explained in Section 3.2.

In the third step, regularized random forest (RRF) [21] is used to get the subset of essential

features. This process reduces the space complexity and time complexity and increases

the accuracy of the model. In the fourth step, the dataset is used to train the classifiers with

their optimum tuning parameters. The used machine learning models are presented in Table

2. The models are combined to get the proposed multilevel ensemble model as mentioned

in Section 4.1. The proposed model is described in Fig 2. Finally, the model’s performance

is evaluated on various parameters such as the area under the curve (AUC), specificity,

sensitivity, Gini, and accuracy with repeated k-fold cross-validation.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4321 http://www.webology.org

Fig. 1: Methodology of Proposed Model

4.1 Proposed Multilevel Ensemble Model

The ensemble is used to deal with the worst case of the model prediction. In the present

work, the focus is on the false prediction and the true prediction of the model, and the

multilevel ensemble model is used to deal with false and true predictions. Seven models

i.e., Decision tree, RF, SVM,

ELM, Neural network, RRF, and av N Net are combined to get better accuracy as mentioned

in Fig

2. All the models are trained on 70% of the dataset, and 30% is used for testing. The

proposed model is divided into three phases, and all phases are explained below:

Phase I: The decision tree, ELM, neural network, SVM model are trained with 70%

of the dataset and generate predictions from 30% of the dataset.

Phase II: The false predictions of two models (decision tree and ELM) from phase I

are used to training the RF model. The false predictions of two models (neural network

and SVM) from phase I are used to training the av N Net model.

Phase III: The false predictions from phase II and true predictions from Phase I are

combined. This combined new dataset is used to train the RRF model that provides

final predictions.

In this approach, true and false predictions, are refined to get an accurate proposed

model. The purpose of using true prediction as the input of other models is to deal with

false positive results. The data is traveled through seven models because these models

perfectly learn the data to provide reliable and accurate results.

Fig. 2: Multilevel Ensemble Model

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4322 http://www.webology.org

5 Model Evaluation Parameters

Various parameters such as Gini, accuracy, AUC, specificity, and sensitivity are

calculated to evaluate the performance of the model. Repeated k-fold cross-validation is

performed to test the robustness of the proposed model.

Class ∼ f (F1, F2, F3, F4,, F121, F122, F123) (1)

5.1 Performance Evaluation

There are various parameters like Gini, accuracy, AUC, specificity, and sensitivity to

measure the performance of models. In the present study, all these parameters are used

for evaluation.

Gini Coefficient Inequality in the distribution is measured through Gini coefficient. The

range of Gini value is between 0 and 1. Like, model M has Gini value of 60%, and model

D has Gini value of 45% then. Model M is considered an efficient model as compared

to model D.

AUC The area under the curve (AUC) is calculated to measure the quality of the

classifier. The amount of area under the receiver operating characteristics (ROC) curve is

AUC. The model scoring high AUC compared to other models is considered an an efficient

model. Its value is between 0 and 1. The quality of the model is good if it has an AUC

value near to 1.

Accuracy Accuracy is calculated to measure the correctness of the classifier. The

accuracy can be calculated as:

TP + TN

Accuracy =
Total Data

∗ 100

Sensitivity Sensitivity(Sens) is also known as recall or true positive rate. It is the proportion

of actual positives which are correctly identified as positives by the classifier and is computed

as:

TP

Sensitivity =

TP +

FN

(3)

(2)

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4323 http://www.webology.org

Specificity Specificity (Spec) is also known as true negative Rate. It relates to the

classifier’s ability to identify negative results and is computed as:

TN

 Specificity =

TN +

FP

(4)

TN: True negative, FP: False positive, TP: True positive, and FN: False negative

5.2 Repeated K-Fold Cross Validation

A large number of comparisons is always preferred to compare the performance of the

model. To run K-fold cross-validation multiple times or increase the number of

comparisons, repeated K-fold cross-validation is useful. In K-fold cross-validation, only

k comparisons are acquired. In cross-validation, ,random data is provided to do the

comparisons in each fold. Here, 10-fold cross- validation is repeated 3 times.

6 Result Analysis, Comparison and Discussion

The machine learning models are trained and evaluated on various parameters as

mentioned in Table 3. Another problem is overfitting/underfitting. To deal with the

overfitting/underfitting issue, the model should be cross-validated and tested on an

independent dataset. If performance is found to be consistent, then models are free from

overfitting/underfitting. Overfitting is when the models learns too much, and underfitting is

when the models learns too less. In cross-validation, models are executed n times, and

accuracy is recorded if accuracy is highly fluctuating, then that model is overfitted/under

fitted/biased. In the present work, repeated K fold cross-validation is used to describe the

consistency in the accuracy, which means the proposed model is not affected by these

problems. For validation of the proposed model, a benchmark dataset is used and

compared with the existing model by using various parameters such as Gini, AUC,

accuracy, MCC, specificity, and sensitivity. The result concludes two things about the

proposed model. First, the proposed model is free from overfitted/under fitted/biased

issues. Second, the outcome of the proposed model is improved as compared to the

existing technique.

Table 2 describes the machine learning models that are trained on the dataset with

optimum tuning parameters. The dataset is partitioned into two parts, 70% and 30%. The

prepared models are unknown to the 30% of the dataset. The proposed model is a

combination of seven models that makes it a multilevel ensemble model, as discussed in

Section 4.1. The models are evaluated

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4324 http://www.webology.org

Table 3: Performance evaluation of machine learning models for Prediction of Android

Malware

S

N

Model Name Gin

i

Accurac

y

AU

C

Specificit

y

Sensitivit

y

1 Random

Forest

0.32 63.35 0.66 0.68 0.43

2 Av N Net 0.34 44.1 0.67 0.71 0.40

3 Decision Tree 0.23 60.87 0.61 0.61 0.45

4 RRF 0.30 62.73 0.65 0.66 0.44

5 Neural

Network

0.14 57.14 0.57 0.56 0.44

6 ELM 0.05 44.1 0.52 0.44 0.50

7 SVM 0.33 61.49 0.66 0.70 0.41

8 Proposed

model

0.34 61.40 0.67 0.57 0.41

on various parameters as mentioned in Table 3. From the results, it is concluded that the

accuracy of the proposed model is increased as compared to the single model accuracy.

Table 4 describes the accuracy of the proposed model. The accuracy has been recorded

by applying 10-fold cross-validation three times. For cross-validation, 70% of the dataset

is used for training and 30% used for testing. Fig. 3 describes the accuracy of the proposed

model 3 times in 10 runs and shows the consistency in the accuracy of the proposed

model.

 Table 4: Repeated 10-Fold Cross Validation of Proposed Model

Fold

s

Run

1

Run

2

Run

3

1 93.17 95.61 96.10

2 94.15 96.10 96.10

3 92.20 97.07 95.12

4 95.12 93.66 96.10

5 94.15 95.12 94.63

6 93.66 96.10 97.07

7 92.68 97.56 92.20

8 94.63 90.73 94.63

9 95.12 97.07 93.66

10 92.68 93.66 94.63

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4325 http://www.webology.org

7 Conclusion

The proposed model increases the prediction accuracy of Android Malware prediction as

compared to the existing technique. This work aims to find the impact of features extracted

from the source code of the .apk file, which denotes the internal structure of the software

on the prediction of malware and normal android applications. In the present study, seven

models i.e., decision tree, ELM, RF, neural network, SVM, avnnet, and RRF, are used to

create a multilevel ensemble model. A novel multilevel ensemble model is developed for

prediction, and it produces high accuracy, Gini, AUC, specificity, and sensitivity. The

multilevel ensemble model is divided into 3 phases. In this approach, true and false

predictions are used to get an an accurate proposed model. The benefit of using true

prediction as the input of other models is to deal with false-positive results. The data is

traveled through seven models because these models perfectly learn the data to provide

reliable and

Fig. 3: Repeated K-Fold Cross Validation of Proposed Model

accurate results. To check the robustness of the proposed model, repeated k-fold cross-

validation is used. We believe that using more properties and machine learning models

with their optimized parameters produces even better outcomes.

References

1. Anshul Arora and Sateesh K Peddoju. Minimizing network traffic features for android

mobile mal- ware detection. In Proceedings of the 18th International Conference on

Distributed Computing and Networking, pages 1–10, 2017.

2. Niall McLaughlin, Jesus Martinez del Rincon, Boo Joong Kang, Suleiman Yerima,

Paul Miller, Sakir Sezer, Yeganeh Safaei, Erik Trickel, Ziming Zhao, Adam Doupé,

et al. Deep android malware detection. In Proceedings of the seventh ACM on

conference on data and application security and privacy, pages 301–308, 2017.

3. Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp, Konrad

Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. Yes, machine learning can be

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4326 http://www.webology.org

more secure! a case study on android malware detection. IEEE Transactions on

Dependable and Secure Computing, 16(4):711–724, 2017.

4. Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota, Rocco Oliveto,

Denys Poshyvanyk, and Andrea De Lucia. Landfill: An open dataset of code smells

with public evaluation. In 2015 IEEE/ACM 12th Working Conference on Mining

Software Repositories, pages 482–485. IEEE, 2015.

5. Julian A Ramos Rojas, Mary Beth Kery, Stephanie Rosenthal, and Anind Dey.

Sampling techniques to improve big data exploration. In 2017 IEEE 7th symposium

on large data analysis and visualization (LDAV), pages 26–35. IEEE, 2017.

6. Anshul Arora and Sateesh K Peddoju. Ntpdroid: a hybrid android malware detector

using network traffic and system permissions. In 2018 17th IEEE International

Conference On Trust, Security And Privacy In Computing And Communications/12th

IEEE International Conference On Big Data Sci- ence And Engineering (Trust

Com/Big Data SE), pages 808–813. IEEE, 2018.

7. Arvind Mahindru and Paramvir Singh. Dynamic permissions based android malware

detection using machine learning techniques. In Proceedings of the 10th innovations in

software engineering conference, pages 202–210, 2017.

8. Shina Sheen, R Anitha, and V Natarajan. Android based malware detection using a

multi feature collaborative decision fusion approach. Neurocomputing, 151:905–912,

2015.

9. Shyam R Chidamber and Chris F Kemerer. Towards a metrics suite for object oriented

design. In Conference proceedings on Object-oriented programming systems, languages,

and applications, pages 197–211, 1991.

10. Neville I. Churcher, Martin J. Shepperd, S Chidamber, and CF Kemerer. Comments

on" a metrics suite for object oriented design. IEEE Transactions on software

Engineering, 21(3):263–265, 1995.

11. Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine:

theory and ap- plications. Neurocomputing, 70(1-3):489–501, 2006.

12. Andi Fitriah Abdul Kadir, Natalia Stakhanova, and Ali Akbar Ghorbani. Android

botnets: What urls are telling us. In International Conference on Network and System

Security, pages 78–91. Springer, 2015.

13. Lov Kumar, Shashank Mouli Satapathy, and Aneesh Krishna. Application of smote

and lssvm with various kernels for predicting refactoring at method level. In

International Conference on Neural Information Processing, pages 150–161.

Springer, 2018.

14. Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and

evolution. In 2012 IEEE symposium on security and privacy, pages 95–109. IEEE,

2012.

15. Andy Liaw and Matthew Wiener. Classification and regression by random forest. R

news, 2(3):18–22, 2002.

16. S. Sathiya Keerthi and Elmer G Gilbert. Convergence of a generalized smo algorithm

for svm classifier design. Machine Learning, 46(1-3):351–360, 2002.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

4327 http://www.webology.org

17. Paul D Berger, Arthur Gerstenfeld, and Amy Z Zeng. How many suppliers are best?

a decision-analysis approach. Omega, 32(1):9–15, 2004.

18. Brian Ripley, William Venables, and Maintainer Brian Ripley. Package ‘nnet’. 2016.

19. Torsten Hothorn, Peter Buehlmann, Thomas Kneib, Matthias Schmid, Benjamin

Hofner, Fabian Sobotka, Fabian Scheipl, and Maintainer Benjamin Hofner. Package

‘mboost’. 2016.

20. Chris Keefer Williams, Allan Engelhardt, Tony Cooper, Zachary Mayer, Andrew

Ziem, Luca Scrucca, Yuan Tang, Can Candan, and Maintainer Max Kuhn. Package

‘caret’. 2016.

21. Suggests R Color Brewer, Houtao Deng, and Maintainer Houtao Deng. Package ‘rrf’.

2013.

22. Wei Li and Sallie Henry. Maintenance metrics for the object oriented paradigm. In

[1993] Proceedings First International Software Metrics Symposium, pages 52–60.

IEEE, 1993.

