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Abstract. Early identification of malicious applications can help the Android user 

register private data and device integrity. It is imperative to introduce a reliable system 

with high precision and effectiveness for predicting. In this study, features extracted from 

intermediate code representations obtained using de compilation of APK file are used for 

providing requi- site input data to develop the models for predicting android malware 

applications. A new multi-tier set model is developed for the prediction of Android 

Malware. Under this overar- ching approach, seven different machine learning models 

are combined to predict Android malware. The proposed model reaches 97.56 
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1 Introduction 

According to India’s digital project and Android operating system, the mobile phone has 

grown in popularity and is becoming essential to the modern user. From January 2015 to 

December 2021, 155 million new Internet users have been identified in India and 40 per 

cent of Indians use mobile Internet and smartphones. The digital economy will also grow as 

more and more private and public actors have opportunities to provide digital services. 

Android is now the most popular smartphone platform with 80% of global sales at the end 

of Q4 2021. By the end of December 2021, 6.5 million Android apps on Google Play and 

smartphone users are using over 60 percent of these Android apps. With the popularity of 

these apps, it also calls on cybercriminals to develop malicious apps to access important 

information from smartphones. According to the survey of G DATA security experts, 3 

million new malicious apps in the fourth half of 2021 and 80% smartphone worldwide had 

installed on them Android. These experts also observed that the new strain of malware 
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every 5 seconds and cyber criminals find new ways and increasing strength to attack 

Android users [1]. It is challenging to predict malware apps during installation in 

smartphones. Also, it is non- trivial in some cases to replicate the problem that arises due 

to this malware apk [2]. Early identi- fication of such malware apps can help the android 

user to save private data and device integrity. Based on the recent study, researchers 

observed that the behaviors of Android apps could be ana- lyzed using static source code 

metrics extracted from intermediate code representations obtained using de compilation of 

APK file [2] [3]. However, there are three main technical challenges in 

developing an android malware prediction model using machine learning techniques. 

– Aggregation Measures: To develop an android malware prediction model, the apk 

file is decompiled to get the intermediate code and source code metrics that may have 

a relationship with malware, are computed. In this work, features sets extracted from 

source code are used to measure the internal structure of the android applications. 

These features are computed at the file level, and considerably easier for a developer 

to develop any prediction model at the file level. But the objective of this work is to 

predict malware and normal android applications. To achieve this, we need to apply 

aggregation measures on the file-level metrics to compute metrics at the system level. 

So, the aggregation measures are used to find the metrics at the system level, which 

will help develop android malware, prediction models. 

– High-Dimensional Data: The performance of the classifiers also depends on features 

that are considered as the input of the android malware prediction models. Selection of the 

relevant and suitable set of the significant uncorrelated feature is a technical challenge 

in the context of malware prediction. 

– Imbalanced Data: The other technical challenge in building an android malware 

prediction model is that the data used for training the models are not balanced. A data 

is considered as balanced when the instances of the target class are approximately 

evenly distributed across various categories of the target class [4] [5]. An imbalance 

dataset is a dataset in which the instances of the target class are unevenly distributed 

across the target class categories. In this work, the considered dataset has not had an 

equal number of malware and normal apks. 

 

The study investigates source code-based approaches for analyzing historical information 

databases to uncover interesting patterns and knowledge that can support android users in 

identifying mal- ware applications. This study uses different machine learning algorithms to 

find interesting patterns by considering features extracted from source code metrics as input. 

The paper is organized as follows: A hasty overview of the evaluated features, dataset, 

feature selection, machine learning models, and benchmark dataset are presented. The 

methodology and proposed model are explained with detailed implementation. The 

experiments, result analysis, comparison, and discussion are discussed with the 

conclusion and future work. 
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2 Literature Review and Background 

 

The focus areas of this proposal are on the application of various sets of metrics such as source 

code metrics, word metrics, and network metrics to develop a model for predicting malware 

applications. Due to space limitations, I reviewed some closely related work to this 

research proposal. 

Anshul Arora and Sateesh K Peddoju derived a malware detection model called NTP 

Droid using System Permissions and Network Traffic [6]. They have collected the 

features from System Permissions and Network Traffic of Android applications and used 

them as input to develop one hybrid model for predicting malware applications. They have 

considered the P-Growth algorithm to train this model and identify valuable patterns for 

predicting malware applications. They have also derived one model called Poster using the 

same features but trained using Unsupervised Learning and Supervised learning [1]. 

Arvind Mahindru and Paramvir Singh studied the dynamic permission of Android 

applications and proposed one model for detecting malware applications using Machine 

Learning Techniques [7]. They have experimented on 11000 Android applications and 

extracted 123 features based on the dynamic behavior of these applications. Arvind 

Mahindru and Paramvir Singh have considered these 123 features as input to train the 

android detection models using Decision Tree (J48), Naive Bayes (NB), Simple Logistic 

(SL), Random Forest (RF), and k-star for detecting malware appli- cations. 

Shina Sheen et al. presented an approach for detecting malware applications using multi-

feature collaborative decision fusion (MCDEF) [8]. They have analyzed different features 

based on API call and permission and considered these analyzed features as an input to train 

the malware prediction models using ensemble learning methods. They have validated these 

models on different categories of malware applications. 

   Table 1: Sample dataset of Android APPs 
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3 Materials and Methods 

3.1 Dataset and its features 

To conduct an in-depth analysis of permission usage of Android applications, we collected 1600 

of 

.apk files, from Google’s play store [6], app china [9], hiapk [10], Android [3], mumayi [11], 

gfan [12], pandaapp [4] and slideme [13]. These .apk files are collected after removing 

viruses, reported by Microsoft Windows Defender 10 and Virus Total 11. Virus Total 12 

helps detect malware by antivirus engines and includes over 60 antivirus software. A number 

of 600 malware samples, from two different datasets [12] [14] are collected. In [12] Kadir et 

al. introduced an Android sample set of botnets, consisting of 14 different botnet families. 

Android Malware Genome project [14] contains a collection of different malware samples 

that cover the majority of existing Android malware families. Both malware and benign 

applications have been collected from the abovementioned sources until December 2018. 

The dataset consists of 1600 rows and 123 features. Features consist of dynamic permission 

and behavior of Android applications. It consists of 800 normal apps and 800 abnormal 

(malware) apps. The glimpse of datasets is presented in Table 1. F1 to F123 are the features, 

and Class represent the type of the APP, i.e., normal (1) or malware(0). 

 

3.2 Feature Measurement 

This study obtained features extracted from intermediate code representations using the 

decom- pilation of APK files. CKJM tool [9] is used to calculate 18 different types of 

features. CKJM comprehensive tool is used for computing the object-oriented metrics at 

the class level. The byte code of the compiled Java files is processed to compute the 

object-oriented source code metrics. The definition of these considered metrics is given 

in [10]. 

 

3.3 Machine Learning Methods 

To get better results, the models’ parameters need to be tuned. The models used in the 

present study are described in Table 2 with required packages and their tuning 

parameters. 

 

4 Methodology 

The methodology is represented in Fig 1. In the first stage, android application packages 

(.apk) are collected from different sources. In this work, we are using 1600 publicly available 

unique Android application packages (.apk) comprising of normal Android application 

packages and malicious 
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Table 2: Machine Learning Models 

Model Metho

d 

Required 

Package 

Tuning Parameter 

Random Forest (RF) [15] rf random forest mtry=2, ntree=500 

Support vector machine (SVM) 

[16] 

ksvm kernlab kernel="rbfdot", type="C-

svc" 

Decision Tree [17] rpart None Use surrogate=0, max 

surrogate=0 

Neural Network [18] nnet nnet size=10 

Extreme Learning Machine 

(ELM) [19] 

elmtrai

n 

elmNN nhid=10 

Avnnet [20] avNNet caret size, linout, trace 

Regularized Random Forest 

(RRF) [21] 

RRF RRF None 

 

applications from different sources such as mumayi [22], gfan [7], Android Malware Genome 

Project [2], Droid Kin data set16 for this experiments. 

The feature measurement is done in the second step and explained in Section 3.2. 

In the third step, regularized random forest (RRF) [21] is used to get the subset of essential 

features. This process reduces the space complexity and time complexity and increases 

the accuracy of the model. In the fourth step, the dataset is used to train the classifiers with 

their optimum tuning parameters. The used machine learning models are presented in Table 

2. The models are combined to get the proposed multilevel ensemble model as mentioned 

in Section 4.1. The proposed model is described in Fig 2. Finally, the model’s performance 

is evaluated on various parameters such as the area under the curve (AUC), specificity, 

sensitivity, Gini, and accuracy with repeated k-fold cross-validation. 
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Fig. 1: Methodology of Proposed Model 

 

4.1 Proposed Multilevel Ensemble Model 

The ensemble is used to deal with the worst case of the model prediction. In the present 

work, the focus is on the false prediction and the true prediction of the model, and the 

multilevel ensemble model is used to deal with false and true predictions. Seven models 

i.e., Decision tree, RF, SVM, 

 

ELM, Neural network, RRF, and av N Net are combined to get better accuracy as mentioned 

in Fig 

2. All the models are trained on 70% of the dataset, and 30% is used for testing. The 

proposed model is divided into three phases, and all phases are explained below: 

 

Phase I: The decision tree, ELM, neural network, SVM model are trained with 70% 

of the dataset and generate predictions from 30% of the dataset. 

Phase II: The false predictions of two models (decision tree and ELM) from phase I 

are used to training the RF model. The false predictions of two models (neural network 

and SVM) from phase I are used to training the av N Net model. 

Phase III: The false predictions from phase II and true predictions from Phase I are 

combined. This combined new dataset is used to train the RRF model that provides 

final predictions. 

 

In this approach, true and false predictions, are refined to get an accurate proposed 

model. The purpose of using true prediction as the input of other models is to deal with 

false positive results. The data is traveled through seven models because these models 

perfectly learn the data to provide reliable and accurate results. 

 

Fig. 2: Multilevel Ensemble Model 
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5 Model Evaluation Parameters 

 

Various parameters such as Gini, accuracy, AUC, specificity, and sensitivity are 

calculated to evaluate the performance of the model. Repeated k-fold cross-validation is 

performed to test the robustness of the proposed model. 

 

Class ∼ f (F1, F2, F3, F4, ...., F121, F122, F123) (1) 

 

5.1 Performance Evaluation 

 

There are various parameters like Gini, accuracy, AUC, specificity, and sensitivity to 

measure the performance of models. In the present study, all these parameters are used 

for evaluation. 

 

Gini Coefficient Inequality in the distribution is measured through Gini coefficient. The 

range of Gini value is between 0 and 1. Like, model M has Gini value of 60%, and model 

D has Gini value of 45% then. Model M is considered an efficient model as compared 

to model D. 

 

AUC The area under the curve (AUC) is calculated to measure the quality of the 

classifier. The amount of area under the receiver operating characteristics (ROC) curve is 

AUC. The model scoring high AUC compared to other models is considered an an efficient 

model. Its value is between 0 and 1. The quality of the model is good if it has an AUC 

value near to 1. 

 

Accuracy Accuracy is calculated to measure the correctness of the classifier. The 

accuracy can be calculated as: 

TP + TN 

Accuracy = 
Total Data 

∗ 100 

 

Sensitivity Sensitivity(Sens) is also known as recall or true positive rate. It is the proportion 

of actual positives which are correctly identified as positives by the classifier and is computed 

as: 

TP 

Sensitivity =  

 
TP + 

FN 

(3) 

 

(2) 
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Specificity Specificity (Spec) is also known as true negative Rate. It relates to the 

classifier’s ability to identify negative results and is computed as: 

TN 

   Specificity =  

 
TN + 

FP 

(4) 

TN: True negative, FP: False positive, TP: True positive, and FN: False negative 

 

5.2 Repeated K-Fold Cross Validation 

A large number of comparisons is always preferred to compare the performance of the 

model. To run K-fold cross-validation multiple times or increase the number of 

comparisons, repeated K-fold cross-validation is useful. In K-fold cross-validation, only 

k comparisons are acquired. In cross-validation, ,random data is provided to do the 

comparisons in each fold. Here, 10-fold cross- validation is repeated 3 times. 

 

6 Result Analysis, Comparison and Discussion 

The machine learning models are trained and evaluated on various parameters as 

mentioned in Table 3. Another problem is overfitting/underfitting. To deal with the 

overfitting/underfitting issue, the model should be cross-validated and tested on an 

independent dataset. If performance is found to be consistent, then models are free from 

overfitting/underfitting. Overfitting is when the models learns too much, and underfitting is 

when the models learns too less. In cross-validation, models are executed n times, and 

accuracy is recorded if accuracy is highly fluctuating, then that model is overfitted/under 

fitted/biased. In the present work, repeated K fold cross-validation is used to describe the 

consistency in the accuracy, which means the proposed model is not affected by these 

problems. For validation of the proposed model, a benchmark dataset is used and 

compared with the existing model by using various parameters such as Gini, AUC, 

accuracy, MCC, specificity, and sensitivity. The result concludes two things about the 

proposed model. First, the proposed model is free from overfitted/under fitted/biased 

issues. Second, the outcome of the proposed model is improved as compared to the 

existing technique. 

Table 2 describes the machine learning models that are trained on the dataset with 

optimum tuning parameters. The dataset is partitioned into two parts, 70% and 30%. The 

prepared models are unknown to the 30% of the dataset. The proposed model is a 

combination of seven models that makes it a multilevel ensemble model, as discussed in 

Section 4.1. The models are evaluated 
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Table 3: Performance evaluation of machine learning models for Prediction of Android 

Malware 

S

N 

Model Name Gin

i 

Accurac

y 

AU

C 

Specificit

y 

Sensitivit

y 

1 Random 

Forest 

0.32 63.35 0.66 0.68 0.43 

2 Av N Net 0.34 44.1 0.67 0.71 0.40 

3 Decision Tree 0.23 60.87 0.61 0.61 0.45 

4 RRF 0.30 62.73 0.65 0.66 0.44 

5 Neural 

Network 

0.14 57.14 0.57 0.56 0.44 

6 ELM 0.05 44.1 0.52 0.44 0.50 

7 SVM 0.33 61.49 0.66 0.70 0.41 

8 Proposed 

model 

0.34 61.40 0.67 0.57 0.41 

 

on various parameters as mentioned in Table 3. From the results, it is concluded that the 

accuracy of the proposed model is increased as compared to the single model accuracy. 

Table 4 describes the accuracy of the proposed model. The accuracy has been recorded 

by applying 10-fold cross-validation three times. For cross-validation, 70% of the dataset 

is used for training and 30% used for testing. Fig. 3 describes the accuracy of the proposed 

model 3 times in 10 runs and shows the consistency in the accuracy of the proposed 

model. 

   

  Table 4: Repeated 10-Fold Cross Validation of Proposed Model 

Fold

s 

Run 

1 

Run 

2 

Run 

3 

1 93.17 95.61 96.10 

2 94.15 96.10 96.10 

3 92.20 97.07 95.12 

4 95.12 93.66 96.10 

5 94.15 95.12 94.63 

6 93.66 96.10 97.07 

7 92.68 97.56 92.20 

8 94.63 90.73 94.63 

9 95.12 97.07 93.66 

10 92.68 93.66 94.63 
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7 Conclusion 

The proposed model increases the prediction accuracy of Android Malware prediction as 

compared to the existing technique. This work aims to find the impact of features extracted 

from the source code of the .apk file, which denotes the internal structure of the software 

on the prediction of malware and normal android applications. In the present study, seven 

models i.e., decision tree, ELM, RF, neural network, SVM, avnnet, and RRF, are used to 

create a multilevel ensemble model. A novel multilevel ensemble model is developed for 

prediction, and it produces high accuracy, Gini, AUC, specificity, and sensitivity. The 

multilevel ensemble model is divided into 3 phases. In this approach, true and false 

predictions are used to get an an accurate proposed model. The benefit of using true 

prediction as the input of other models is to deal with false-positive results. The data is 

traveled through seven models because these models perfectly learn the data to provide 

reliable and 

 

 

 
 

Fig. 3: Repeated K-Fold Cross Validation of Proposed Model 

 

accurate results. To check the robustness of the proposed model, repeated k-fold cross-

validation is used. We believe that using more properties and machine learning models 

with their optimized parameters produces even better outcomes. 
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